Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Res Sq ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496470

RESUMEN

Filial imprinting, a crucial ethological paradigm, provides insights into the neurobiology of early learning and its long-term impact on behaviour. To date, only invasive techniques, such as autoradiography or lesion, have been employed to understand this behaviour. The primary limitation of these methods lies in their constrained access to the entire brain, impeding the exploration of brain networks crucial at various stages of this paradigm. Recently, advances in functional magnetic resonance imaging (fMRI) in the avian brain have opened new windows to explore bird's brain function at the network level. Here, we developed a ground-breaking non-invasive functional MRI technique for awake, newly hatched chicks that record whole-brain BOLD signal changes throughout imprinting experiments. While the initial phases of memory acquisition imprinting behaviour have been unravelled, the long-term storage and retrieval components of imprinting memories are still unknown. Our findings identified potential long-term storage of imprinting memories across a neural network, including the hippocampal formation, the medial striatum, the arcopallium, and the prefrontal-like nidopallium caudolaterale. This platform opens up new avenues for exploring the broader landscape of learning and memory processes in neonatal vertebrates, contributing to a more comprehensive understanding of the intricate interplay between behaviour and brain networks.

2.
Sci Rep ; 14(1): 3142, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326324

RESUMEN

Exploring how the emergent functional connectivity (FC) relates to the underlying anatomy (structural connectivity, SC) is one of the major goals of modern neuroscience. At the macroscale level, no one-to-one correspondence between structural and functional links seems to exist. And we posit that to better understand their coupling, two key aspects should be considered: the directionality of the structural connectome and limitations in explaining networks functions through an undirected measure such as FC. Here, we employed an accurate directed SC of the mouse brain acquired through viral tracers and compared it with single-subject effective connectivity (EC) matrices derived from a dynamic causal model (DCM) applied to whole-brain resting-state fMRI data. We analyzed how SC deviates from EC and quantified their respective couplings by conditioning on the strongest SC links and EC links. We found that when conditioning on the strongest EC links, the obtained coupling follows the unimodal-transmodal functional hierarchy. Whereas the reverse is not true, as there are strong SC links within high-order cortical areas with no corresponding strong EC links. This mismatch is even more clear across networks; only within sensory motor networks did we observe connections that align in terms of both effective and structural strength.


Asunto(s)
Encéfalo , Conectoma , Ratones , Animales , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/anatomía & histología
3.
Commun Biol ; 7(1): 126, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267534

RESUMEN

Previous studies have adopted an edge-centric framework to study fine-scale network dynamics in human fMRI. To date, however, no studies have applied this framework to data collected from model organisms. Here, we analyze structural and functional imaging data from lightly anesthetized mice through an edge-centric lens. We find evidence of "bursty" dynamics and events - brief periods of high-amplitude network connectivity. Further, we show that on a per-frame basis events best explain static FC and can be divided into a series of hierarchically-related clusters. The co-fluctuation patterns associated with each cluster centroid link distinct anatomical areas and largely adhere to the boundaries of algorithmically detected functional brain systems. We then investigate the anatomical connectivity undergirding high-amplitude co-fluctuation patterns. We find that events induce modular bipartitions of the anatomical network of inter-areal axonal projections. Finally, we replicate these same findings in a human imaging dataset. In summary, this report recapitulates in a model organism many of the same phenomena observed in previously edge-centric analyses of human imaging data. However, unlike human subjects, the murine nervous system is amenable to invasive experimental perturbations. Thus, this study sets the stage for future investigation into the causal origins of fine-scale brain dynamics and high-amplitude co-fluctuations. Moreover, the cross-species consistency of the reported findings enhances the likelihood of future translation.


Asunto(s)
Araceae , Conectoma , Cristalino , Humanos , Animales , Ratones , Encéfalo/diagnóstico por imagen , Axones
4.
Commun Biol ; 6(1): 1238, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062107

RESUMEN

Technical advances in neuroimaging, notably in fMRI, have allowed distributed patterns of functional connectivity to be mapped in the human brain with increasing spatiotemporal resolution. Recent years have seen a growing interest in extending this approach to rodents and non-human primates to understand the mechanism of fMRI connectivity and complement human investigations of the functional connectome. Here, we discuss current challenges and opportunities of fMRI connectivity mapping across species. We underscore the critical importance of physiologically decoding neuroimaging measures of brain (dys)connectivity via multiscale mechanistic investigations in animals. We next highlight a set of general principles governing the organization of mammalian connectivity networks across species. These include the presence of evolutionarily conserved network systems, a dominant cortical axis of functional connectivity, and a common repertoire of topographically conserved fMRI spatiotemporal modes. We finally describe emerging approaches allowing comparisons and extrapolations of fMRI connectivity findings across species. As neuroscientists gain access to increasingly sophisticated perturbational, computational and recording tools, cross-species fMRI offers novel opportunities to investigate the large-scale organization of the mammalian brain in health and disease.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Animales , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Conectoma/métodos , Primates , Neuroimagen , Mamíferos
5.
Nat Commun ; 14(1): 8216, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081838

RESUMEN

Brain communication, defined as information transmission through white-matter connections, is at the foundation of the brain's computational capacities that subtend almost all aspects of behavior: from sensory perception shared across mammalian species, to complex cognitive functions in humans. How did communication strategies in macroscale brain networks adapt across evolution to accomplish increasingly complex functions? By applying a graph- and information-theory approach to assess information-related pathways in male mouse, macaque and human brains, we show a brain communication gap between selective information transmission in non-human mammals, where brain regions share information through single polysynaptic pathways, and parallel information transmission in humans, where regions share information through multiple parallel pathways. In humans, parallel transmission acts as a major connector between unimodal and transmodal systems. The layout of information-related pathways is unique to individuals across different mammalian species, pointing at the individual-level specificity of information routing architecture. Our work provides evidence that different communication patterns are tied to the evolution of mammalian brain networks.


Asunto(s)
Macaca , Sustancia Blanca , Humanos , Masculino , Ratones , Animales , Encéfalo , Cognición , Sensación , Imagen por Resonancia Magnética , Red Nerviosa , Mamíferos
6.
Cereb Cortex ; 33(21): 10750-10760, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37718159

RESUMEN

Complement signaling is thought to serve as an opsonization signal to promote the phagocytosis of synapses by microglia. However, while its role in synaptic remodeling has been demonstrated in the retino-thalamic system, it remains unclear whether complement signaling mediates synaptic pruning in the brain more generally. Here we found that mice lacking the Complement receptor 3, the major microglia complement receptor, failed to show a deficit in either synaptic pruning or axon elimination in the developing mouse cortex. Instead, mice lacking Complement receptor 3 exhibited a deficit in the perinatal elimination of neurons in the cortex, a deficit that is associated with increased cortical thickness and enhanced functional connectivity in these regions in adulthood. These data demonstrate a role for complement in promoting neuronal elimination in the developing cortex.


Asunto(s)
Microglía , Neuronas , Ratones , Animales , Encéfalo , Transducción de Señal , Sinapsis/fisiología , Receptores de Complemento , Plasticidad Neuronal/fisiología
7.
EMBO J ; 42(14): e111790, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37211968

RESUMEN

The mature mammalian brain connectome emerges during development via the extension and pruning of neuronal connections. Glial cells have been identified as key players in the phagocytic elimination of neuronal synapses and projections. Recently, phosphatidylserine has been identified as neuronal "eat-me" signal that guides elimination of unnecessary input sources, but the associated transduction systems involved in such pruning are yet to be described. Here, we identified Xk-related protein 8 (Xkr8), a phospholipid scramblase, as a key factor for the pruning of axons in the developing mammalian brain. We found that mouse Xkr8 is highly expressed immediately after birth and required for phosphatidylserine exposure in the hippocampus. Mice lacking Xkr8 showed excess excitatory nerve terminals, increased density of cortico-cortical and cortico-spinal projections, aberrant electrophysiological profiles of hippocampal neurons, and global brain hyperconnectivity. These data identify phospholipid scrambling by Xkr8 as a central process in the labeling and discrimination of developing neuronal projections for pruning in the mammalian brain.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Proteínas de Transferencia de Fosfolípidos , Animales , Ratones , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Fosfatidilserinas/metabolismo , Axones/metabolismo , Plasticidad Neuronal , Mamíferos , Proteínas de la Membrana/metabolismo
8.
bioRxiv ; 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36865122

RESUMEN

How the emergent functional connectivity (FC) relates to the underlying anatomy (structural connectivity, SC) is one of the biggest questions of modern neuroscience. At the macro-scale level, no one-to-one correspondence between structural and functional links seems to exist. And we posit that to better understand their coupling, two key aspects should be taken into account: the directionality of the structural connectome and the limitations of describing network functions in terms of FC. Here, we employed an accurate directed SC of the mouse brain obtained by means of viral tracers, and related it with single-subject effective connectivity (EC) matrices computed by applying a recently developed DCM to whole-brain resting-state fMRI data. We analyzed how SC deviates from EC and quantified their couplings by conditioning both on the strongest SC links and EC links. We found that when conditioning on the strongest EC links, the obtained coupling follows the unimodal-transmodal functional hierarchy. Whereas the reverse is not true, as there are strong SC links within high-order cortical areas with no corresponding strong EC links. This mismatch is even more clear across networks. Only the connections within sensory motor networks align both in terms of effective and structural strength.

9.
Mol Psychiatry ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737483

RESUMEN

Functional and structural connectivity alterations in short- and long-range projections have been reported across neurodevelopmental disorders (NDD). Interhemispheric callosal projection neurons (CPN) represent one of the major long-range projections in the brain, which are particularly important for higher-order cognitive function and flexibility. However, whether a causal relationship exists between interhemispheric connectivity alterations and cognitive deficits in NDD remains elusive. Here, we focused on CDKL5 Deficiency Disorder (CDD), a severe neurodevelopmental disorder caused by mutations in the X-linked Cyclin-dependent kinase-like 5 (CDKL5) gene. We found an increase in homotopic interhemispheric connectivity and functional hyperconnectivity across higher cognitive areas in adult male and female CDKL5-deficient mice by resting-state functional MRI (rs-fMRI) analysis. This was accompanied by an increase in the number of callosal synaptic inputs but decrease in local synaptic connectivity in the cingulate cortex of juvenile CDKL5-deficient mice, suggesting an impairment in excitatory synapse development and a differential role of CDKL5 across excitatory neuron subtypes. These deficits were associated with significant cognitive impairments in CDKL5 KO mice. Selective deletion of CDKL5 in the largest subtype of CPN likewise resulted in an increase of functional callosal inputs, without however significantly altering intracortical cingulate networks. Notably, such callosal-specific changes were sufficient to cause cognitive deficits. Finally, when CDKL5 was selectively re-expressed only in this CPN subtype, in otherwise CDKL5-deficient mice, it was sufficient to prevent the cognitive impairments of CDKL5 mutants. Together, these results reveal a novel role of CDKL5 by demonstrating that it is both necessary and sufficient for proper CPN connectivity and cognitive function and flexibility, and further validates a causal relationship between CPN dysfunction and cognitive impairment in a model of NDD.

10.
Biol Psychiatry ; 93(5): 419-429, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36517282

RESUMEN

Altered or atypical functional connectivity as measured with functional magnetic resonance imaging (fMRI) is a hallmark feature of brain connectopathy in psychiatric, developmental, and neurological disorders. However, the biological underpinnings and etiopathological significance of this phenomenon remain unclear. The recent development of MRI-based techniques for mapping brain function in rodents provides a powerful platform to uncover the determinants of functional (dys)connectivity, whether they are genetic mutations, environmental risk factors, or specific cellular and circuit dysfunctions. Here, we summarize the recent contribution of rodent fMRI toward a deeper understanding of network dysconnectivity in developmental and psychiatric disorders. We highlight substantial correspondences in the spatiotemporal organization of rodent and human fMRI networks, supporting the translational relevance of this approach. We then show how this research platform might help us comprehend the importance of connectional heterogeneity in complex brain disorders and causally relate multiscale pathogenic contributors to functional dysconnectivity patterns. Finally, we explore how perturbational techniques can be used to dissect the fundamental aspects of fMRI coupling and reveal the causal contribution of neuromodulatory systems to macroscale network activity, as well as its altered dynamics in brain diseases. These examples outline how rodent functional imaging is poised to advance our understanding of the bases and determinants of human functional dysconnectivity.


Asunto(s)
Roedores , Esquizofrenia , Animales , Humanos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos
11.
Transl Psychiatry ; 12(1): 305, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915065

RESUMEN

The D-aspartate oxidase (DDO) gene encodes the enzyme responsible for the catabolism of D-aspartate, an atypical amino acid enriched in the mammalian brain and acting as an endogenous NMDA receptor agonist. Considering the key role of NMDA receptors in neurodevelopmental disorders, recent findings suggest a link between D-aspartate dysmetabolism and schizophrenia. To clarify the role of D-aspartate on brain development and functioning, we used a mouse model with constitutive Ddo overexpression and D-aspartate depletion. In these mice, we found reduced number of BrdU-positive dorsal pallium neurons during corticogenesis, and decreased cortical and striatal gray matter volume at adulthood. Brain abnormalities were associated with social recognition memory deficit at juvenile phase, suggesting that early D-aspartate occurrence influences neurodevelopmental related phenotypes. We corroborated this hypothesis by reporting the first clinical case of a young patient with severe intellectual disability, thought disorders and autism spectrum disorder symptomatology, harboring a duplication of a chromosome 6 region, including the entire DDO gene.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Adulto , Animales , Ácido Aspártico/metabolismo , Trastorno del Espectro Autista/genética , D-Aspartato Oxidasa/química , D-Aspartato Oxidasa/genética , D-Aspartato Oxidasa/metabolismo , Ácido D-Aspártico/genética , Ácido D-Aspártico/metabolismo , Duplicación de Gen , Humanos , Discapacidad Intelectual/genética , Trastornos de la Memoria/genética , Ratones , Oxidorreductasas , Receptores de N-Metil-D-Aspartato/metabolismo
12.
Int J Paleopathol ; 38: 1-12, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35679660

RESUMEN

OBJECTIVE: To differentially diagnose cranial lesions noted on a medieval skeleton and explore the importance of comorbidity. MATERIALS: A skull of an adult female with osteolytic and osteoblastic lesions, edentulism, and an ectopic tooth from an ossuary of the Church of Santa Maria in Vico del Lazio, Frosinone Italy, dating to the Middle Ages. METHODS: Macroscopic observations of the remains, CT scan, and differential diagnosis was undertaken. RESULTS: A diagnosis of metastatic cancer (potentially breast cancer) or metastatic neuroblastoma (NBL) is offered. CONCLUSIONS: Considering the noted comorbidities, this case might represent a rare case of metastatic neuroblastoma. SIGNIFICANCE: The exploration of comorbidity, in this case the presence of metastatic carcinoma and edentulism, has tremendous potential to expand our knowledge about cancer in the past. LIMITATIONS: Lack of postcranial elements. SUGGESTIONS FOR FURTHER RESEARCH: Clinical and paleopathological investigation of comorbidity in modern and archeological populations to develop an evolutionary perspective on the presence of cancer in the past.


Asunto(s)
Carcinoma , Neuroblastoma , Adulto , Comorbilidad , Diagnóstico Diferencial , Femenino , Humanos , Italia , Persona de Mediana Edad , Neuroblastoma/patología , Cráneo/patología
13.
Neurobiol Dis ; 169: 105742, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35483565

RESUMEN

Sensory abnormalities are a common feature in autism spectrum disorders (ASDs). Tactile responsiveness is altered in autistic individuals, with hypo-responsiveness being associated with the severity of ASD core symptoms. Similarly, sensory abnormalities have been described in mice lacking ASD-associated genes. Loss-of-function mutations in CNTNAP2 result in cortical dysplasia-focal epilepsy syndrome (CDFE) and autism. Likewise, Cntnap2-/- mice show epilepsy and deficits relevant with core symptoms of human ASDs, and are considered a reliable model to study ASDs. Altered synaptic transmission and synchronicity found in the cerebral cortex of Cntnap2-/- mice would suggest a network dysfunction. Here, we investigated the neural substrates of whisker-dependent responses in Cntnap2+/+ and Cntnap2-/- adult mice. When compared to controls, Cntnap2-/- mice showed focal hyper-connectivity within the primary somatosensory cortex (S1), in the absence of altered connectivity between S1 and other somatosensory areas. This data suggests the presence of impaired somatosensory processing in these mutants. Accordingly, Cntnap2-/- mice displayed impaired whisker-dependent discrimination in the textured novel object recognition test (tNORT) and increased c-fos mRNA induction within S1 following whisker stimulation. S1 functional hyperconnectivity might underlie the aberrant whisker-dependent responses observed in Cntnap2-/- mice, indicating that Cntnap2 mice are a reliable model to investigate sensory abnormalities that characterize ASDs.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Animales , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Corteza Cerebral , Proteínas de la Membrana/genética , Ratones , Proteínas del Tejido Nervioso/genética , Corteza Somatosensorial , Vibrisas
14.
Nat Commun ; 13(1): 1056, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35217677

RESUMEN

While shaped and constrained by axonal connections, fMRI-based functional connectivity reorganizes in response to varying interareal input or pathological perturbations. However, the causal contribution of regional brain activity to whole-brain fMRI network organization remains unclear. Here we combine neural manipulations, resting-state fMRI and in vivo electrophysiology to probe how inactivation of a cortical node causally affects brain-wide fMRI coupling in the mouse. We find that chronic inhibition of the medial prefrontal cortex (PFC) via overexpression of a potassium channel increases fMRI connectivity between the inhibited area and its direct thalamo-cortical targets. Acute chemogenetic inhibition of the PFC produces analogous patterns of fMRI overconnectivity. Using in vivo electrophysiology, we find that chemogenetic inhibition of the PFC enhances low frequency (0.1-4 Hz) oscillatory power via suppression of neural firing not phase-locked to slow rhythms, resulting in increased slow and δ band coherence between areas that exhibit fMRI overconnectivity. These results provide causal evidence that cortical inactivation can counterintuitively increase fMRI connectivity via enhanced, less-localized slow oscillatory processes.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Animales , Imagen por Resonancia Magnética/métodos , Ratones , Vías Nerviosas/fisiología , Corteza Prefrontal/diagnóstico por imagen
15.
Curr Biol ; 32(3): 631-644.e6, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34998465

RESUMEN

Human imaging studies have shown that spontaneous brain activity exhibits stereotypic spatiotemporal reorganization in awake, conscious conditions with respect to minimally conscious states. However, whether and how this phenomenon can be generalized to lower mammalian species remains unclear. Leveraging a robust protocol for resting-state fMRI (rsfMRI) mapping in non-anesthetized, head-fixed mice, we investigated functional network topography and dynamic structure of spontaneous brain activity in wakeful animals. We found that rsfMRI networks in the awake state, while anatomically comparable to those observed under anesthesia, are topologically configured to maximize interregional communication, departing from the underlying community structure of the mouse axonal connectome. We further report that rsfMRI activity in wakeful animals exhibits unique spatiotemporal dynamics characterized by a state-dependent, dominant occurrence of coactivation patterns encompassing a prominent participation of arousal-related forebrain nuclei and functional anti-coordination between visual-auditory and polymodal cortical areas. We finally show that rsfMRI dynamics in awake mice exhibits a stereotypical temporal structure, in which state-dominant coactivation patterns are configured as network attractors. These findings suggest that spontaneous brain activity in awake mice is critically shaped by state-specific involvement of basal forebrain arousal systems and document that its dynamic structure recapitulates distinctive, evolutionarily relevant principles that are predictive of conscious states in higher mammalian species.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Mamíferos , Ratones , Red Nerviosa/fisiología , Vigilia
16.
Cereb Cortex ; 32(14): 3042-3056, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34791077

RESUMEN

Abnormal tactile response is an integral feature of Autism Spectrum Disorders (ASDs), and hypo-responsiveness to tactile stimuli is often associated with the severity of ASDs core symptoms. Patients with Phelan-McDermid syndrome (PMS), caused by mutations in the SHANK3 gene, show ASD-like symptoms associated with aberrant tactile responses. The neural underpinnings of these abnormalities are still poorly understood. Here we investigated, in Shank3b-/- adult mice, the neural substrates of whisker-guided behaviors, a key component of rodents' interaction with the surrounding environment. We assessed whisker-dependent behaviors in Shank3b-/- adult mice and age-matched controls, using the textured novel object recognition (tNORT) and whisker nuisance (WN) test. Shank3b-/- mice showed deficits in whisker-dependent texture discrimination in tNORT and behavioral hypo-responsiveness to repetitive whisker stimulation in WN. Sensory hypo-responsiveness was accompanied by a significantly reduced activation of the primary somatosensory cortex (S1) and hippocampus, as measured by c-fos mRNA induction, a proxy of neuronal activity following whisker stimulation. Moreover, resting-state fMRI showed a significantly reduced S1-hippocampal connectivity in Shank3b mutants, in the absence of altered connectivity between S1 and other somatosensory areas. Impaired crosstalk between hippocampus and S1 might underlie Shank3b-/- hypo-reactivity to whisker-dependent cues, highlighting a potentially generalizable somatosensory dysfunction in ASD.


Asunto(s)
Trastornos de los Cromosomas , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso , Vibrisas , Animales , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas del Tejido Nervioso/genética , Corteza Somatosensorial/metabolismo , Vibrisas/fisiología
17.
Nat Commun ; 12(1): 6084, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34667149

RESUMEN

Postmortem studies have revealed increased density of excitatory synapses in the brains of individuals with autism spectrum disorder (ASD), with a putative link to aberrant mTOR-dependent synaptic pruning. ASD is also characterized by atypical macroscale functional connectivity as measured with resting-state fMRI (rsfMRI). These observations raise the question of whether excess of synapses causes aberrant functional connectivity in ASD. Using rsfMRI, electrophysiology and in silico modelling in Tsc2 haploinsufficient mice, we show that mTOR-dependent increased spine density is associated with ASD -like stereotypies and cortico-striatal hyperconnectivity. These deficits are completely rescued by pharmacological inhibition of mTOR. Notably, we further demonstrate that children with idiopathic ASD exhibit analogous cortical-striatal hyperconnectivity, and document that this connectivity fingerprint is enriched for ASD-dysregulated genes interacting with mTOR or Tsc2. Finally, we show that the identified transcriptomic signature is predominantly expressed in a subset of children with autism, thereby defining a segregable autism subtype. Our findings causally link mTOR-related synaptic pathology to large-scale network aberrations, revealing a unifying multi-scale framework that mechanistically reconciles developmental synaptopathy and functional hyperconnectivity in autism.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Sinapsis/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adolescente , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Niño , Femenino , Haploinsuficiencia , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sinapsis/genética , Serina-Treonina Quinasas TOR/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
18.
Nat Commun ; 12(1): 2225, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33850128

RESUMEN

The pathophysiology of autism has been suggested to involve a combination of both macroscale connectome miswiring and microcircuit anomalies. Here, we combine connectome-wide manifold learning with biophysical simulation models to understand associations between global network perturbations and microcircuit dysfunctions in autism. We studied neuroimaging and phenotypic data in 47 individuals with autism and 37 typically developing controls obtained from the Autism Brain Imaging Data Exchange initiative. Our analysis establishes significant differences in structural connectome organization in individuals with autism relative to controls, with strong between-group effects in low-level somatosensory regions and moderate effects in high-level association cortices. Computational models reveal that the degree of macroscale anomalies is related to atypical increases of recurrent excitation/inhibition, as well as subcortical inputs into cortical microcircuits, especially in sensory and motor areas. Transcriptomic association analysis based on postmortem datasets identifies genes expressed in cortical and thalamic areas from childhood to young adulthood. Finally, supervised machine learning finds that the macroscale perturbations are associated with symptom severity scores on the Autism Diagnostic Observation Schedule. Together, our analyses suggest that atypical subcortico-cortical interactions are associated with both microcircuit and macroscale connectome differences in autism.


Asunto(s)
Trastorno Autístico/diagnóstico por imagen , Trastorno Autístico/fisiopatología , Conectoma/métodos , Adolescente , Trastorno Autístico/metabolismo , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Corteza Cerebral , Niño , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Neuroimagen , Índice de Severidad de la Enfermedad , Tálamo/fisiopatología , Transcriptoma
19.
Neuron ; 109(3): 545-559.e8, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33290731

RESUMEN

The evolutionarily conserved default mode network (DMN) is a distributed set of brain regions coactivated during resting states that is vulnerable to brain disorders. How disease affects the DMN is unknown, but detailed anatomical descriptions could provide clues. Mice offer an opportunity to investigate structural connectivity of the DMN across spatial scales with cell-type resolution. We co-registered maps from functional magnetic resonance imaging and axonal tracing experiments into the 3D Allen mouse brain reference atlas. We find that the mouse DMN consists of preferentially interconnected cortical regions. As a population, DMN layer 2/3 (L2/3) neurons project almost exclusively to other DMN regions, whereas L5 neurons project in and out of the DMN. In the retrosplenial cortex, a core DMN region, we identify two L5 projection types differentiated by in- or out-DMN targets, laminar position, and gene expression. These results provide a multi-scale description of the anatomical correlates of the mouse DMN.


Asunto(s)
Encéfalo/diagnóstico por imagen , Red en Modo Predeterminado/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Neuronas/fisiología , Animales , Encéfalo/citología , Conectoma , Red en Modo Predeterminado/citología , Imagen por Resonancia Magnética , Ratones , Red Nerviosa/citología , Neuronas/citología
20.
Neuropsychopharmacology ; 46(6): 1194-1206, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33342996

RESUMEN

Cholinergic drugs acting at M1/M4 muscarinic receptors hold promise for the treatment of symptoms associated with brain disorders characterized by cognitive impairment, mood disturbances, or psychosis, such as Alzheimer's disease or schizophrenia. However, the brain-wide functional substrates engaged by muscarinic agonists remain poorly understood. Here we used a combination of pharmacological fMRI (phMRI), resting-state fMRI (rsfMRI), and resting-state quantitative EEG (qEEG) to investigate the effects of a behaviorally active dose of the M1/M4-preferring muscarinic agonist xanomeline on brain functional activity in the rodent brain. We investigated both the effects of xanomeline per se and its modulatory effects on signals elicited by the NMDA-receptor antagonists phencyclidine (PCP) and ketamine. We found that xanomeline induces robust and widespread BOLD signal phMRI amplitude increases and decreased high-frequency qEEG spectral activity. rsfMRI mapping in the mouse revealed that xanomeline robustly decreased neocortical and striatal connectivity but induces focal increases in functional connectivity within the nucleus accumbens and basal forebrain. Notably, xanomeline pre-administration robustly attenuated both the cortico-limbic phMRI response and the fronto-hippocampal hyper-connectivity induced by PCP, enhanced PCP-modulated functional connectivity locally within the nucleus accumbens and basal forebrain, and reversed the gamma and high-frequency qEEG power increases induced by ketamine. Collectively, these results show that xanomeline robustly induces both cholinergic-like neocortical activation and desynchronization of functional networks in the mammalian brain. These effects could serve as a translatable biomarker for future clinical investigations of muscarinic agents, and bear mechanistic relevance for the putative therapeutic effect of these class of compounds in brain disorders.


Asunto(s)
Agonistas Muscarínicos , Tiadiazoles , Animales , Hipocampo/metabolismo , Ratones , Agonistas Muscarínicos/farmacología , Piridinas , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...